- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Hannah, Christian H (1)
-
Seth, Anil C (1)
-
Stone, Nicholas C (1)
-
van_Velzen, Sjoert (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Tidal disruption events (TDEs) are a class of transients that occur when a star is destroyed by the tides of a massive black hole (MBH). Their rates encode valuable MBH demographic information, but this can only be extracted if accurate TDE rate predictions are available for comparisons with observed rates. In this work, we present a new, observer-friendly Python package called REPTiDE, which implements a standard loss-cone model for computing TDE rates given a stellar density distribution and an MBH mass. We apply this software to a representative sample of 91 nearby galaxies over a wide range of stellar masses with high-resolution nuclear density measurements from C. H. Hannah et al. We measure per-galaxy TDE rates ranging between 10−7.7and 10−2.9yr–1and find that the sample-averaged rates agree well with observations. We find a turnover in the TDE rate as a function of both galaxy stellar mass and black hole mass, with the peak rates being observed in galaxies at a galaxy mass of 109.5M⊙and a black hole mass of 106.5M⊙. Despite the lower TDE rates inferred for intermediate-mass black holes, we find that they have gained a higher fraction of their mass through TDEs when compared to higher-mass black holes. This growth of lower-mass black holes through TDEs can enable us to place interesting constraints on their spins; we find maximum spins ofa• ≈ 0.9 for black holes with masses below ∼105.5M⊙.more » « lessFree, publicly-accessible full text available July 11, 2026
An official website of the United States government
